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ABSTRACT
This work addresses the association of moving-target indicator
(MTI) tracks, EO and SAR imagery (IMINT) tracks, and signal
intelligence (SIGINT) tracks, and the fusion of the
corresponding report-level kinematic and identity information.

Our fusion algorithm is based on hypothesis-management logic
which recursively processes incoming frames of data from
upstream trackers.  The logic includes hypothesis generation,
scoring, and pruning components.  These components are based
on track information, kinematic-state information, and vehicle
identity information.

Key track-level performance metrics for our fusion algorithm
include the probability of correct track-to-track association and
track fragmentation.  We study the performance of the algorithm
with simulated single-sensor tracks, for two scenarios of interest.
The first scenario is based on a data collection for a set of 30
GPS-equipped targets, while the second is based on simulated
ground truth for a set of 8 scattering targets.
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1. INTRODUCTION

Existing algorithms for multi-target tracking are generally limited to single-sensor platforms, or to multi-
sensor platforms where the sensors have similar characteristics, e.g. multiple GMTI platforms; similarly,
much of the work on track-to-track association algorithms has been limited to trackers with similar
characteristics, e.g. multiple GMTI trackers [1].  Relatively little work has been done to address the more
general fusion problem where an arbitrary number of trackers with widely varying sensor characteristics
are employed.  More significantly, to our knowledge our work is the first to do so in a multiple-hypothesis
framework, combining hypothesis testing and nonlinear filtering technology to enable accrual of
information and deferred resolution of association hypotheses.

Our algorithm takes as input the tracks from an arbitrary number of GMTI, EO and SAR imagery (IMINT),
and signal intelligence (SIGINT) trackers, as well as elevation data if this is available.  The algorithm fuses
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these tracks, and results in a set of tracks that have improved continuity, reduced errors in kinematic state
estimates, and improved identity (target type) information.  Indeed, the trackers of interest have
complementary characteristics: GMTI trackers identify moving targets (or stationary, rotating targets);
IMINT and SIGINT trackers are effective at identifying target identity, and potentially identify both
stationary and moving targets.  A key point is that, while the algorithmic details we describe are specific to
these classes of trackers, the framework is quite general, so that other trackers based on sensors with
different detection characteristics can be easily accommodated.

This paper is organized as follows.  In Section 2, we describe our hybrid-state modeling paradigm for target
kinematics and our hybrid-state kinematic filter, which generalize the well-known Extended Kalman Filter
(EKF).  In Section 3, we motivate our Markov chain model for target identity and describe the identity
filtering equations.  Models for the upstream trackers are discussed in Section 4.  Section 5 describes the
framework for the ATIF (all-source track and identity fusion) algorithm; the recursive hypothesis-
management logic includes hypothesis generation, scoring, and pruning components.  Section 6 defines
performance metrics of interest and provides two case studies, associated with two scenarios of interest.
Concluding remarks that summarize our work and identify areas of continuing work are given in Section 7.

2. KINEMATIC MODELING AND FILTERING

The target attributes that we exploit for tracking purposes are the (time-varying) kinematic state as well as
the (static) identity, or vehicle type.  In this section, we describe our kinematic modeling and filtering.
Further details can be found in [2].

A number of multiple-model and hybrid-state approaches to target tracking with MTI sensors have been
proposed [3].  We will explore the use of a hybrid-state model to address our multi-sensor problem.  In our
hybrid-state model, the discrete-state process is a two-state continuous-time Markov chain.  The state at
time t  is given by ( ) { }smt ,∈ξ , where m and s represent move and stop states, respectively.  Transition

rates are given by msλ  and smλ  for move-stop and stop-move transitions, respectively.

The continuous-state dynamics depend on the discrete motion state.  In particular, we have:

(2.1) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )[ ]′=+= ttwttwttwttwtXtFtX yx ξξξξ ,,00,,,! ,

where we have zero-mean white Gaussian noise with ( )( )[ ] ( )[ ]mtqttwE xx == ξξ 1,2  and

( )( )[ ] ( ) ( )[ ]mttqttwE yy == ξδξ 1,2 .  (The characteristic function []⋅1  equals unity when its argument holds,

and equals zero otherwise).

Transitions in the continuous state at discrete-state transition times are as follows.  The first two
components of the state, which are the vehicle position, are continuous at transition times.  The velocity
components are discontinuous at discrete-state transition times.  In particular, at a move-stop transition, the
velocity jumps to zero.  At a stop-move transition, the velocity is modeled as a zero-mean random vector
with covariance TΣ .

In order to use the hybrid-state model in a tractable way, it is necessary to introduce the following
fundamental assumption for the dynamics relative to the time sequence ( ),..., 21 tt :

•  The hybrid-state dynamics obey a fundamental minimality or sampling assumption, whereby a target
undergoes at most one discrete-state transition between frame times.

Note that a sensor report may not identify the motion state of a vehicle as being move or stop.  Similarly,
the lack of a report for a target does not necessarily identify the motion state of the target.  However, our



hybrid-state filtering equations are conditioned on a particular discrete-state sequence; thus, we identify an
unambiguous sequence of discrete states at each of the times ( ),..., 21 tt , for each track hypothesis.

Given a sequence of discrete motion states at the times ( ),..., 21 tt , we are interested in a recursive scheme

for the sequence of MMSE (minimum mean squared error) estimates of the target’s kinematic state, given
all available sensor observations.  This requires a recursive computation of a conditional distribution.  Like
the EKF, our filter is based on the assumption that the conditional distribution of a target’s kinematic state
is well approximated by a Gaussian distribution.  Note that, besides the usual sources of error in this
approximation (sensor thresholds, nonlinear MTI measurements), the hybrid-state kinematics are nonlinear.

The filtering task is subdivided into the following tasks: initialization, prediction and update.  We will
make use of the following notation:

•  ( )kkX |  and ( )kkP |  are the conditional mean and covariance, respectively, for the kinematic state of

a target at time kt , given all information up to and including time kt

•  ( )kkX |1+  and ( )kkP |1+  are the predicted mean and covariance, respectively, for the kinematic

state of a target at time 1+kt , given all information up to and including time kt

•  ( ) ( ) ( )
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P , where each of the matrices on the r.h.s. is a 2-by-2 matrix

The first report is used to initialize the filter.  We assume there is no prior distribution associated with the
target’s position, and that the probability distribution for target velocity is given by ( )TN Σ,0 .  IMINT and

SIGINT, we use a maximum likelihood estimate for the vehicle position.

In the case of MTI, the geometric projection of the report onto the ground is a good approximation to the
maximum likelihood (ML) estimate.  An accurate, iterative scheme to determine this projection makes use
of the WGS84 ellipsoid model, DTED elevation data, and a correction for geoid undulation [4].
Alternatively, an approximate geometric projection is adequate in many settings [2].  This method neglects
the difference in elevation of the initial target location relative to the origin of the Cartesian coordinate
system, and provides a coarse approximation to the ML estimate of position.  The range rate measurement
is then processed in a standard manner, using the estimate of position to define the linearization point for
the EKF.

Discretization of the continuous-time hybrid-state dynamics is based on the observation that the probability
distribution for Markov-chain transitions is uniformly distributed on a time interval, given that a transition
occurs during the time interval, and that transition delays are exponentially distributed [5].  This fact leads
to closed-form prediction equations for the kinematic-state estimate and covariance matrix.  Specifically,

let kkk ttt −=∆ +1 .  If the discrete motion state is move at kt  and stop at 1+kt , we have:
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(2.4) ( ) ( ) ( ) 0|1|1|1 222112 =+=+=+ kkPkkPkkP .

If the discrete motion state is stop at kt  and stop at 1+kt , we have:

(2.5) ( ) ( ),||1 kkXkkX =+

(2.6) ( ) ( )kkPkkP ||1 =+ .

If the discrete motion state is move at kt  and move at 1+kt :

(2.7) ( ) ( ) ),|(|1 kkXtkkX k∆Φ=+

(2.8) ( ) ( ) ( ) ( ) ( )kkk tQtkkPtkkP ∆+∆Φ′∆Φ=+ ||1 ,

where ( )ktQ ∆  is given by:
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Finally, if the discrete motion state is stop at kt  and move at 1+kt :
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where ( )ktQ ∆ˆ  is given by :
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If a sensor measurement is available, the prediction step is followed by an update step.  This is a
straightforward application of the EKF.  The update equations depend on whether the report is MTI,
IMINT, or SIGINT, and whether it corresponds to a mover or sitter.  Note that an MTI sitter report
corresponds to a stationary rotator, for which we only process range and azimuth components.   Also, note
that in processing MTI reports, available elevation data is used in determining the predicted range
measurement.

There is a close connection between our hybrid-state model and filter, and the IMM approach [3].  Both
approaches are characterized by continuous-state dynamics that are influenced by a time-varying discrete
state.  We note two differences between the approaches.  First, in our model the discrete-state transitions
are defined in continuous time: in general, the times associated with discrete-state transitions are not also
times associated with sensor reports, and a discrete-time model does not reflect this.  This affects both the
prediction step of the filter, as well as the likelihood assigned to a particular discrete-state sequence.
Secondly, our filter specifically accounts for discrete-state information provided by an upstream tracker.

3. IDENTITY MODELING AND FILTERING

A target’s identity is inherently a static quantity.  Nevertheless, it is useful to consider a dynamical model
for vehicle identity: this introduces robustness into the resulting filtering equations, since the effect of
process noise is to discount the weight of older identity observations relative to more recent ones. In
particular, we characterize vehicle type by a finite-state Markov chain.  Our knowledge of vehicle type is
characterized by a probability distribution over all possible vehicle types.  The distribution ( )1+kv

corresponding to time 1+kt  is computed recursively based on ( )kv  and the current identity observation,

( ) { }mkZ ,...,11 ∈+ .  In particular, we have:

(3.1) ( ) ( ) ( )kv
n

Ikv n 




 +−=+ 111ˆ αα ,

where I  is the n-by-n identity matrix, n1  is an n-by-n matrix of ones, and 0≥α .  Note that by setting

0=α , we have a static model for vehicle type.  In general, we will use a small value for α .

If there is no identity observation, ( )1+kv  is given by ( )1ˆ +kv .  If there is an identity observation, ( )1+kv

can be determined as follows:

(3.2) ( ) ( ) ( )
( ) ( )11ˆ

1ˆ
1

jNkv

jNkv
kv

+
+=+ ,

where 1  is a vector of 1’s of appropriate dimension, ( )jN  is a diagonal matrix with ( ) ijii MjN = , and M

is the confusion matrices for the appropriate sensor.

The following quantity that represents the likelihood of a particular identity observation is used in our track
scoring equations:

(3.3) ( ) ( )( ) ( ) ( )( ) ( )


 +++

=++
otherwise. ,1

exists, 1 if ,111ˆ
1,1ˆ

kZkZNkv
kZkvf

4. TRACKER MODELS

The input to ATIF consists of the outputs of an arbitrary number of trackers.  Currently, the following types
of trackers are of interest:



•  Moving-target-indicator (MTI) trackers
•  Imagery-based (IMINT) trackers, including both EO and SAR
•  Signal-intelligence (SIGINT) trackers

By assumption, each tracker produces a time-ordered sequence of frames.  The contents of the frames are
specified below.  ATIF processes the merged sequence of frames from all the trackers in a time-ordered
manner; the output is a sequence of frames indexed by the same times.

Each input frame consists of the following:

1. A time stamp t
2. A sensor index, which identifies the tracker
3. A sensor type, which identifies a sensor.
4. Possibly, a bounding box that characterizes the region on the ground that is illuminated by the sensor
5. A set of reports

If the bounding box is not specified, for MTI and IMINT frames we interpret this as meaning that the entire
region of interest is included.  Note that for IMINT frames, the sensor type will be either EO or SAR.
SIGINT frames do not include a bounding box.  Each report may include the following:

1. A track identifier, or track id
2. A sensor observation
3. A discrete motion state, which is either move or stop
4. An identity observation

We assume that every report includes a track id. If item (2) is missing from the report, we say that the track
is coasting.  A track is never initiated with a coast.  For MTI, the sensor observation includes both the
measured quantities as well as the platform position.  For all the trackers currently of interest, items (3) and
(4) are never included unless (2) is included.  We do not have coasts associated with SIGINT tracks.

ATIF requires that each tracker have a characterization for its detection and motion-state assumptions.  For
the trackers that are currently of interest, these are shown in the following tables.

Tracker type Detection of mover Detection of sitter
MTI 1 0
IMINT (SAR frames) 0 1
IMINT (EO frames) 1 1
SIGINT not applicable not applicable

Table 4.1. Detection assumptions for specific sensors

Tracker type Possible motion state Default motion state
(observation/coast)

MTI move or stop move/none
IMINT (SAR frames) stop stop/none
IMINT (EO frames) move or stop none/none
SIGINT move or stop none/not applicable

Table 4.2. Motion-state assumptions for reports from specific trackers

The information in these tables is relevant to the process by which ATIF generates track hypotheses.  In
Table 4.1, we indicate with a 1 those motion states that are detected with high probability by a particular



sensor, and we indicate with a 0 those motion states that are detected with low probability by a particular
sensor.  In particular, the lack of a report in a particular frame for an existing track hypothesis, combined
with bounding box information and the information in Table 4.1, has implications for the motion state that
is inferred for the target.  If there is no report for a track for which one is expected, based on its previous
estimated location relative to the bounding box and based on Table 4.1, the implication is that the (input)
track has been terminated.  Note that SIGINT tracks are never terminated.

Recall that a report may not include a discrete motion state.  In Table 4.2, the second column indicates what
are the possible discrete motion states. The third column indicates how ATIF will infer the discrete motion
state when it is not specified.  For MTI reports, the default assumption is that the sensor observation is
associated with a moving target.  Likewise, for SAR reports, the default assumption is that the sensor
observation is associated with a stationary target.  For EO and SIGINT, both discrete motion states are
considered, and the likelier one is chosen.  For all coasts, the likelier discrete motion state is chosen: this
will correspond to maintaining the tracks’ last discrete motion state.

While ATIF is currently based on inputs from the tracker types that have been described in this section, it is
important to note that other tracker types may be added.  To do so, it is necessary to identify the frame
contents, as well as the detection and motion state assumptions.

5. HYPOTHESIS MANAGEMENT

The ATIF algorithm is a multi-hypothesis tracking (MHT) algorithm.  That is, multiple association
hypotheses are considered; these lead to a set of track hypothesis trees.  With a specified latency, a single
global hypothesis is chosen.  A global hypothesis is a consistent set of track hypotheses that accounts for all
incoming tracks in a consistent manner.  In principle, all global hypotheses have a score that reflects their
likelihood, based on the set of track inputs and our modeling assumptions.  We identify a near-optimal
global hypothesis, using a heuristic algorithm that does not require that all global hypotheses be explicitly
enumerated.  The identification of a global hypothesis is followed by a pruning scheme that removes all
track hypotheses not contained in the global hypothesis that was selected.  Note that, since the process of
resolving to a single global hypothesis is done with some latency, multiple hypotheses are maintained.

ATIF follows the track-oriented paradigm introduced in [7], as opposed to the earlier, hypothesis-oriented
paradigm originally proposed in [8].  (The latter approach has generated some renewed interest due to a
more efficient implementation [9]).  All tracks identified by an upstream tracker are accounted for at the
ATIF output.  The key difference between ATIF and report-level MHT tracking is that ATIF considers
track-to-track association hypotheses, rather than report-to-report associations.  While this reduces the set
of association hypotheses that are considered for a given set of sensor reports, the algorithm must account
for the widely varying update rates associated with upstream trackers.  Unlike some track-to-track fusion
algorithms [10][11], which combine state estimates obtained from different trackers, ATIF re-processes
raw sensor measurements.  This is done to enable improved state estimation as well as more accurate
hypothesis scoring.  Upstream trackers contribute to the fusion task by associating sensor measurements
into tracks, and removing a substantial fraction of false alarms.

5.1. Hypothesis-Generation Logic

The track-generation logic identifies an updated set of track hypothesis trees, as a function of the existing
set of track hypothesis trees and the current sensor frame.  A high-level view of the logic is summarized in
Table 5.1.

Each node (i.e. track hypothesis) in the set of track trees contains the following elements:

•  time stamp
•  set of (tracker index, track id) pairs
•  discrete kinematic state: move or stop
•  kinematic state: mean and covariance



•  identity state
•  score (based on track log-likelihood)

for i=1:number of active track hypotheses in previous layer
if there is an update to the track and gating is successful

 add a track hypothesis to current layer
else

add a track hypothesis to current layer
for all new tracks

if gating test is successful and association is allowed
add a track hypothesis to current layer

for i=1:number of reports
if (sensor type, track id) pair is new or at least one gating test was unsuccessful

                         add a track hypothesis to current layer, with no parent

Table 5.1. Pseudo-code for Track-Generation Logic

The time stamp is given by the current sensor frame time.  The set of (tracker index, track id) pairs is the
union of the following:

•  For each MTI tracker, the (sensor index, track id) for the active MTI track associated with the node, if
it exists.

•  For each IMINT tracker, the (sensor index, track id) for the active IMINT track associated with the
node, if it exists.

•  For each SIGINT tracker, the union of all tracks associated with the node.

Also, if the parent’s set of (sensor index, track id) pairs contains a pair for which an update exists in the
current frame, but for which the gating condition is not satisfied, the node will have that (tracker index,
track id) pair removed.  Note that a track is not active if the latest frame associated with the particular
tracker did not contain an update for the track.

Next, the discrete kinematic state is determined as follows.  If a report in the current frame is used in
generating a node, the report’s discrete kinematic state defines that of the node, if such a discrete kinematic
state exists.  If it does not, both alternatives are considered, and the one resulting in a higher node score is
chosen; a simple approximate to this task is to choose that hypothesis such that the discrete kinematic state
does not change.  This approximation is exact in the case of track coasts.  Note that in general the same
report may be used in different track hypotheses with different discrete motion states.  This may occur with
a coast report from any sensor type, and with any EO or SIGINT report for which no discrete motion state
is specified.  For new EO and SIGINT tracks where the first report’s discrete motion state is not specified,
by convention we always choose the stop state.

If a report is not used in generating the node, then in some instances a termination node is generated.
Specifically, if the current sensor type is IMINT (EO) and the bounding box condition is satisfied, a
termination node is generated.  Also, for sufficiently unlikely unconfirmed mover or sitter tracks, i.e. track
hypothesis that have transitioned from one discrete motion state to another without the presence of a sensor
observation, a termination node is generated. Once a track has terminated, it cannot have any further reports
associated with it.

In all other cases in which a report is not used in generating a node, the following logic determines the
discrete kinematic state:
•  If the current frame’s sensor type is MTI and the bounding box condition is satisfied, the new node’s

discrete kinematic state is stop.
•  If the current frame’s sensor type is IMINT (SAR) and the bounding box condition is satisfied, the new

node’s discrete kinematic state is move.



•  Otherwise, the new node’s discrete kinematic state is the same as the parent node’s discrete kinematic
state.

The bounding box condition tests whether the location given by the latest kinematic state for a track
hypothesis is contained in the region defined by the bounding box corner points.

The logic is motivated by two key ideas.  The first is that the probability of detection associated with the
MTI and SAR sensors are high for moving and stationary vehicles, respectively, when the vehicles are
inside the sensor’s bounding box.  EO sensors have high probability of detection for both moving and
stationary vehicles.  This impacts the way that negative information is handled, i.e. the implicit information
about a target that is available if no update is received in the current frame.  In terms of the logic, a coast,
i.e. a track update with no sensor observation, is handled in the same way as a track update with an
observation.  (Note that to avoid overshooting the stop location on MTI dropped tracks, a small latency
allows terminal coasts to be removed).  The second idea is that a discrete kinematic state transition is less
likely than it is for a target to remain in the same discrete kinematic state.  Thus, if no new information is
available regarding a target’s state, it is assumed that the discrete kinematic state has not changed.

Finally, note that the logic allows for upstream tracks to be broken.  This is based on the recognition that
errors in hypothesis pruning may occur.  If at least one gating is unsuccessful for a track update, we spawn
a new-track hypothesis.  We have avoided additional hypotheses, whereby the report is also allowed to gate
with existing tracks.  In general, the gating parameters for track breakage will be different than for testing
whether tracks may be fused, so that track fusion is more difficult than track breaks.

The gating test includes both kinematic and identity components, and insures that sufficiently unlikely
hypotheses are not considered.  Both kinematic and identity gating tests are performed; kinematic gating is
based on the innovation likelihood associated with the EKF [12], while identity gating is based on eqn.
(3.3).

5.2. Track Scoring

The log-likelihood score associated with a track initiation is given by

(5.1) ( ) sl =1 ,

where 0<s  is an ATIF parameter that penalizes track initiations.  Note that there is no innovation
likelihood term due to the first report: this reflects the fact that there is no prior distribution for target
position.  A track initiation due to an input track breakage is penalized more heavily still.

Let ( )kl  be the score associated with a track.  The general expression for updating the score is the

following:

(5.2) 
( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )[ ]1,,|1,|1log              

1

111, +⋅++⋅−+
=+

+++ kZkvfYkkPkkXgttp

klkl

kkkkdkskdks

where ( )⋅⋅⋅,p  relates to discrete motion state transitions, ( )⋅⋅⋅ ,,g  is the innovation likelihood associated with

the EKF, and ( )⋅⋅,f  is given by eqn. (3.3) and relates to the identity observation.

Let ( )kdks  denote the discrete kinematic state of a track at time kt .  The function ( )kk ttp −+⋅⋅ 1,  represents

the probability of a single discrete state transition in the time interval ( )1, +kk tt , and is defined as follows for

mssm λλ ≠ :

(5.3) ( ) ( )( )kkmskkmm ttttp −−=− ++ 11 exp λ ,



(5.4) ( ) ( ) ( )( ) ( )( )[ ]kkmskksm
smms

ms
kkms ttttttp −−−−−

−
=− +++ 111 expexp λλ

λλ
λ

,

(5.5) ( ) ( )( )kksmkkss ttttp −−=− ++ 11 exp λ ,

(5.6) ( ) ( ) ( )( ) ( )( )[ ]kkmskksm
smms

sm
kksm ttttttp −−−−−

−
=− +++ 111 expexp λλ

λλ
λ

.

For λλλ ≡= mssm , (5.4) and (5.6) are replaced by:

(5.7) ( ) ( ) ( ) ( )( )[ ]kkkkkkmskksm ttttttpttp −−−=−=− ++++ 1111 exp λλ .

The recursive expression (5.2) does not take account of normalization that goes on in ATIF.  Once a track
tree is confirmed, i.e. one of its branches is contained in all global hypotheses and an ATIF track id is
assigned, the recursive likelihood computation is modified to account for the fact that, at the resolved layer,
the track likelihood is set to 1.  Intuitively, this sets to 1 the probability that a sequence of discrete state
transitions and updates is associated with a particular target.

For a confirmed track tree, let n be the N-scan parameter.  Once the track hypothesis at k+1-n is resolved,

the normalized likelihood ( )1~
+kl  differs from that defined in equation (5.2) as follows:

(5.10) ( ) ( ) ( )nklklkl −+−+=+ 111
~

.

To clarify, the sequence of operations is as follows: when a new frame of data arrives, equation (5.2) is
used to score each track hypothesis.  These scores are used to determine which tracks are maintained and
which are pruned, by reasoning over global hypotheses.  Once pruning of the track trees has taken place,
equation (5.9) is used to adjust the scores of all track hypotheses associated with confirmed track trees.

It is necessary to have a mechanism in place to remove confirmed tracks when no updates arrive for a
sufficiently long period of time.  The mechanism that we use is the following.  When a track hypothesis
first transitions from one discrete motion state to another without the presence of a sensor observation, we
initialize a secondary likelihood calculation:

(5.12) ( ) ( ) ( )( )[ ]kkkdkskdks ttpkl −=+ ++ 11,2 log1 .

Subsequently, while no sensor observations are used in updating the track, the secondary likelihood is
updated as follows:

(5.13) ( ) ( ) ( ) ( )( )[ ]kkkdkskdks ttpklkl −+=+ ++ 11,22 log1 .

Note that normalization does not affect the secondary likelihood calculation.

A track termination may be due to a missing EO report, or may be due to an unconfirmed mover or sitter
hypothesis with a sufficiently small secondary likelihood.  For a track termination, the log-likelihood
update equation is given by:

(5.14) ( ) ( ) dklkl +=+1 ,

where 0<d  is an ATIF parameter that penalizes track terminations.  Once a track has terminated, it cannot
have any further reports associated with it, nor does its track score change.



5.3. Hypothesis Pruning

Our track-generation logic results in a set of track trees with a depth of N_scan+1, where N_scan defines
the latency between the current frame of data and the resolved frame in ATIF.  Further, scores are
associated with each track hypothesis.  In particular, each score is the log-likelihood associated with the
track hypothesis, and depends on the discrete motion state sequence, kinematic state information, and
vehicle type information, as well as additional algorithmic parameters including initiation, termination, and
track-breakage scores (associated with breakage of input tracks).

Given a set of track trees, it is of interest to prune the trees so as to result in a depth of N_scan.  That is, we
wish to resolve all track hypotheses up to a latency of N_scan.  To do so, one would like to identify the
optimal global hypothesis from the set of all global hypotheses implicitly defined by the set of track
hypotheses.  A simple sub-optimal approach to doing so is to use a greedy heuristic, based on rank-ordering
the track hypotheses [13].  This approach is not appropriate in the ATIF context, given the nature of our
track hypothesis scores.

A possible approach is to use an indexing structure which explicitly identifies and updates a list of K-best
global hypotheses, and resolves track hypotheses on the basis of the best global in the current list [9].  The

disadvantage of this approach is that its complexity is quite large, i.e. roughly ( )4KNO , where K is the size

of the global hypothesis list, and N is the number of targets in the scenario.  Further, for a fixed level of
performance, it appears that K must grow exponentially as a function of N.  While elements of this
approach may be of interest to us in the future, we have decided not to pursue it at present.

We have chosen to pursue a linear programming approach to identify a good approximation to the optimal
global hypothesis.  This approach identifies a good (near-optimal) global hypothesis, without requiring any
global-hypothesis indexing structures.

Let M be the total number of input tracks to ATIF in the last N_scan+1 frames plus the total number of
confirmed ATIF tracks, and let { }Miti ,...1, =  be the set of these tracks.  Note that input tracks that are

potentially broken by the ATIF track-generation logic are counted more than once, i.e. for the purposes of
this discussion each track fragment is identified as a separate input track.  Let { }Nihi ,...1, =  denote the set

of N ATIF track hypotheses. Let { }Nii ,...1, =λ  denote the set of scores associated with the track

hypotheses.  Let { }NiTi ,...1, =  denote the set of track lists associated with the track hypotheses. That is, the

list { }MjtT ji ,...1, =⊂  identifies which input tracks are contained in the ATIF track hypothesis ih .

A global hypothesis is identified by a vector { } Nx 1,0∈  where, denoting as ix  the ith component of x, we

interpret 1=ix  to mean that hypothesis ih  is contained in the global hypothesis.  A global hypothesis must

satisfy

(5.15) bAx = ,

where A is an MxN matrix with 1=ijA  if ji Tt ∈ , i.e. if the input track it  is part of track hypothesis jh .

Otherwise, we have 0=ijA .  Also, b is {} M1 , i.e. a vector of ones.

The constraint (2.1) says that a global hypothesis must account for all input tracks, and must not include the
same input track in more than one track hypothesis.  The optimal global hypothesis x̂  is given by

(5.16) xcx ′= maxargˆ  ,



subject to (2.1) and { } Nx 1,0∈ , where c is a vector with Nic ii ,...1, == λ .  Let us denote this optimization

problem by P1.  Solving P1 directly for x̂  is an intractable, integer programming problem.

If we relax the constraint { } Nx 1,0∈  to [ ]Nx 1,0∈ , we have a standard linear programming problem with

both equality and inequality constraints.  Let us denote this problem as P2, and let x~ denote the solution to

P2.  Note that in general we will have { } Nx 1,0~ ∉ .

In order to obtain a feasible solution to P1, it is necessary to perturb the solution x~  to P2.  A simple way to
do so is the following.  Consider a third optimization problem P3:

(5.17) xx ′~max ,

subject to (2.1) and { } Nx 1,0∈ .  Let x  denote the sub-optimal solution to P3 obtained using the greedy

heuristic.  This is our approximation to x̂ .

Our use of the greedy heuristic applied to the same set of track hypotheses with track scores given by the
solution to P2, amounts to a sequential rounding off to 1 of elements of x~ , done in a greedy fashion
beginning with those elements close to 1.  Using the greedy heuristic insures that a feasible solution vector
( x ) results.

6. PERFORMANCE RESULTS

For both of the scenarios that we will consider, ground truth target trajectories and vehicle type information
are available.  For performance studies, one could consider simulating sensor reports and providing these
reports to single-sensor trackers, and then providing the outputs to ATIF.  While this approach is
appropriate to study overall system performance, it does not isolate the performance of the ATIF algorithm.
Thus, we have developed track-simulation code that generates MTI, IMINT, and SIGINT tracks on the
basic of ground truth data and a number of track-simulation parameters.  This allows us to treat the quality
of upstream tracks as an input specification.

Input tracks are simulated as follows.  Noisy report level information is generated with zero-mean white
Gaussian sensor noise, for all sensor types.  Identity information is confused using confusion matrices that
are representative of typical performance.  In the case of MTI, identity information is coarse, i.e. vehicles
are classified as tracked or wheeled.  In the case of IMINT, based on existing model-based classification
(MBC) technology, confusion matrices are available which are diagonally dominant, though some vehicle
types cannot be distinguished.  For SIGINT, we use a diagonally dominant square confusion matrix.  We
simulate missing sensor reports (coasts) and missing identity information.  All MTI reports are currently
associated with moving targets (no simulation of stationary rotators), and all SAR reports are associated
with stationary targets.  EO and SIGINT reports may or may not contain discrete state information.

Track breaks are introduced at each track update, with some probability; also, all MTI tracks are broken
when targets are stationary, and all IMINT tracks are broken when a sufficiently large displacement occurs.
Sensor frame times may be defined by specifying collection rates for each sensor; alternatively, specific
collection times and bounding box information may be specified.  The latter allows us to simulate tracks
consistent with specific data collections associated with a scenario of interest.

The key ATIF performance metrics that we focus on are the following:

•  Fragmentation (FRAG).  This is defined as the average number of ATIF tracks per target.  Good
performance corresponds to low fragmentation.

•  Probability of correct track-to-track association (PCA).  This is computed as the ratio of the number
of correct associations and the total number of associations.



•  Group-level probability of correct track-to-track association (GPCA).  This is a slight modification to
the PCA metric, whereby we do not distinguish between targets in the same group.  Groups are defined
on a scenario-by-scenario basis.

•  Probability of track breakage (PTB).  As discussed, ATIF will occasionally break incoming tracks,
principally for those trackers that have a low update rate relative to other trackers, and when N_scan is
not sufficiently large.   PTB is computed as the ratio of the number of track breaks and the total
number of input tracks.

The performance of ATIF depends on the scenario, the quality of the incoming tracks, and a number of key
algorithmic parameters.  Extensive Monte Carlo performance testing is needed to fully characterize the
dependence of our performance metrics on these.  At present, our testing has proceeded as follows.  For
each of the two scenarios that we consider, we generate input tracks of varying quality, where the lower-
quality tracks are characterized by much higher fragmentation.  We run ATIF in a high-fusion or low-fusion
mode, where the high-fusion mode considers many more association-hypotheses be using much larger
kinematic and identity gates.  Finally, ATIF is run in a delayed-resolution (MHT) or immediate-resolution
(non-MHT) mode, where the first is characterized by a large enough N_scan to allow the update of low
update rate tracks, particularly IMINT tracks, while the second has N_scan=0.

Fig. 6.1 illustrates the qualitative behavior that we expect as a function of the quality of input tracks and
key ATIF parameters.  In particular, the lines illustrate the tradeoff between high PCA and low
fragmentation: for a given set of input tracks and a fixed N_scan, as ATIF more aggressively fuses input
tracks, PCA drops off.  Conversely, a high PCA corresponds to a conservative, low-fusion mode.  Both
metrics improve as the quality of the input tracks improves, or as the complexity of the algorithm is
increased with a larger accrual of information before hypotheses are resolved, i.e. large N_scan.  A large
N_scan allows ATIF to more aggressively create association hypotheses, without decreasing the resulting
PCA.

A similar qualitative behavior is expected if PCA is replaced by GPCA.  Note that, in addition to a lower
PCA, the high fusion mode coupled with a low N_scan is more likely to induce some input track breaks.

Figure 6.1. ATIF performance tradeoffs

6.1. First Scenario

The first scenario is comprised of 30 targets, and takes place over a one-hour period.  Of the 30 targets, 19
are stationary targets that only give rise to IMINT or SIGINT tracks.  13 of these are targets at Site 12 that
are observed in imagery; we define these to be a group.  There are 11 targets that go through a number of
stop-move and move-stop transitions. A first group of three targets is imaged at Site A and subsequently
travel to Site C.  The second and third groups (three and five targets, respectively) are imaged at Site B
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high-fusion mode

low-fusion mode

increasing quality of inputs
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along with the 13 “clutter” targets.  Subsequently, seven of the eight targets in groups two and three move a
short distance towards Site C, and stop.  A second image of Site B is taken, without these seven targets.  At
this point, group two moves to the water (Site C), and stops.  An image at Site C is taken, containing the
group two targets.  Group 3 moves from near Site B to Site C, moves across the water, and proceeds
northwest.  Finally, groups one and two move together back to Site B.  A number of SIGINT reports (both
COMINT and ELINT) are interspersed throughout the one-hour scenario, originating from the three groups
of moving targets as well as from six additional fixed targets.  Fig. 6.2 illustrates the target trajectories
associated with this scenario, as well as the bounding boxes of the SAR images.

Figure 6.2.  The First Scenario

Monte Carlo based performance results are illustrated in Table 6.1.  In particular, note that we have
considered all combinations of high-fusion and low-fusion modes, with MHT and non-MHT modes.  As
expected, larger fusion gates lead to improved fragmentation, at the cost of decreased PCA and GPCA.
The delayed-resolution (MHT) mode improves performance with respect to all metrics.

ATIF mode FRAG PCA GPCA PTB
high fusion,
non-MHT

1.0933 0.4213 0.6820 0.0186

low fusion,
non-MHT

2.1467 0.4444 0.6897 0.0153

high fusion,
MHT

1.0200 0.4751 0.7843 0.0051

low fusion,
MHT

2.1200 0.4729 0.7493 0.0119

Table 6.1.  Performance Metrics for the First Scenario

6.2. Second Scenario

Unlike the first scenario, the second scenario is based on simulated ground truth tracks.  These were
developed to provide a scenario of current military interest, where a set of targets scatters as an attack is
underway.  The scenario is comprised of 8 targets, partitioned into four groups of size 2, 3, 2, 1,
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respectively.  Groups 1 and 4 move from Site A to Site C, after which imagery is collected at Site C.
Groups 2 and 3 similarly proceed from Site A to Site C (and the Group 4 target repositions itself slightly),
followed by imagery at Site C over all 8 targets.  Sensing a strike, the assembled vehicles depart in stages.
Group 2 moves to Site D and group 1 moves to Site B.  Imagery is again collected over Site C, as well as
over Site B.  Finally, the remaining groups leave Site C, Site C is imaged after all vehicles have departed,
Groups 3 and 4 arrive at Site B, and images are taken at Sites B and D.  SIGINT reports exist over the early
part of the scenario, before the targets are of aware of an incoming strike.  Figure 6.3 illustrates the target
trajectories associated with this scenario, as well as the bounding boxes of the SAR images.

Figure 6.3.  The Second Scenario

Monte Carlo based performance results are illustrated in Table 6.2, for the same ATIF modes considered in
the river-crossing scenario.  Note that performance results are better for this scenario; this is due in part to
the improved, noiseless ground truth data that led to better quality in the simulated input tracks.

ATIF mode FRAG PCA GPCA PTB
high fusion,
non-MHT

1.0250 0.7571 0.8500 0.0056

low fusion,
non-MHT

1.4750 0.8350 0.9345 0.0056

high fusion,
MHT

1.0250 0.8627 0.9780 0

low fusion,
MHT

1.4750 0.8671 0.9837 0

Table 6.2.  Performance Metrics for the Second Scenario

Interestingly, in the MHT mode, there is a smaller drop-off in PCA and GPCA as we go from the low-
fusion to the high-fusion mode, as compared with the drop-off in the non-MHT mode.  (In fact, in the
water-movement scenario, there is no drop-off at all).  This suggests that, when using delayed hypothesis
resolution, we need not be conservative in considering potential association hypotheses, since in the high-
fusion mode we have a considerable reduction in fragmentation with only a small penalty, if any, in PCA
and GPCA.
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Finally, note that performance results depend on the quality of the input tracks.  Figure 6.4 illustrates that
ATIF fragmentation increases as the number in input tracks is increased, due to higher fragmentation in the
upstream trackers.

Figure 6.4.  Input and Output Fragmentation for the Second Scenario

7. CONCLUDING REMARKS

This paper has introduced a new track-to-track association algorithm (ATIF) that fuses tracks from an
arbitrary numbers of MTI, IMINT (both SAR and EO), and SIGINT trackers.  The ATIF algorithm
considers multiple association hypotheses and uses evidence accrual to resolve hypotheses with a specified
latency.  Track hypothesis scores are based on track information, kinematic information, and vehicle type
information.  The algorithm effectively fuses information from disparate sources to provide better tracking
accuracy, vehicle type information, and track continuity, with a good probability of correct association
(especially at the group level).  A key feature of the ATIF algorithm is that it is readily extensible to
additional sensor/tracker types, provided that appropriate models for these are available, e.g. IR imagery.

Preliminary analysis of the complexity of the ATIF algorithm suggests that it should scale well with
increasing scenario size.  We plan to validate this analysis by testing the algorithm on larger scenarios.
Also, we plan to explore extending the algorithm to include road tracking, tracking at a group level,
adaptive hypothesis filtering, and asynchronous tracking and filtering issues that arise in large,
decentralized networks of trackers.  Finally, we plan to develop a closed-loop architecture whereby sensor
management can improve the results provided by the current, open-loop architecture.
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